A new pressure sensor array for local normal stress measurement in complex fluids, Journal of Rheology 65, 583 (2021)

 A new pressure sensor array for local normal stress measurement in complex fluids, Journal of Rheology 65, 583 (2021) ;
Gauthier Anaïs, Pruvost Mickaël, Gamache Olivier, Colin Annie,

https://doi.org/10.1122/8.0000249

Résumé :
A new pressure sensor array, positioned on the bottom plate of a standard torsional rheometer is presented. It is built from a unique piezo-capacitive polymeric foam, and consists of twenty-five capacitive pressure sensors (of surface 4.5×4.5 mm2 each) built together in a 5×5 regular array. The sensor array is used to obtain a local mapping of the normal stresses in complex fluids, which dramatically extends the capability of the rheometer. We demonstrate this with three examples. First, the pressure profile is reconstructed in a polymer solution, which enable the simultaneous measurement of the first and the second normal stress differences N1 and N2, with a precision of 2 Pa. In a second part, we show that negative normal stresses can also be detected. Finally, we focus on the normal stress fluctuations that extend both spatially and temporally ina shear-thickening suspension of cornstarch particles. We evidence the presence of local a unique heterogeneity rotating very regularly. In addition to their low-cost and high versatility, the sensors show here their potential to finely characterize the normal stresses in viscosimetric flows.

A new pressure sensor array for local normal stress measurement in complex fluids, preprint, 2020, https://arxiv.org/abs/2010.04474 A new pressure sensor array for local normal stress measurement in complex fluids, preprint, 2020, https://arxiv.org/abs/2010.04474


Haut de page



À lire aussi...

Spreading of complex fluids with a soft blade Marion Krapez et al. , Phys. Rev. Fluids 7, 084002 (2022)

Spreading of complex fluids with a soft blade, Marion Krapez, Anaïs Gauthier, Jean-Baptiste Boitte, Odile Aubrun, Jean-François Joanny and Annie (...) 

> Lire la suite...

New membrane and electrode assembly concept to improve salinity energy harvesting, Youcef Brahmi and Annie Colin, Soft Matter, (2022)

New membrane and electrode assembly concept to improve salinity energy harvesting, Youcef Brahmi and Annie Colin, Soft Matter, (2022) (...) 

> Lire la suite...

 

Informations Pratiques

Equipe Matériaux Innovants pour l’Energie, membre du laboratoire CBI (Chimie Biologie Innovation)

Bâtiment G/E
ESPCI ParisTech
10 rue Vauquelin
75005 Paris

Directrice MIE : Pr. Annie Colin (annie.colin (arobase) espci.fr)
Gestionnaire : Isabelle Borsenberger +33 (0)1 40 79 46 35
Assistante de gestion : Hélène Dodier +33 (0)1 40 79 46 35